Welcome to the Slack Lab. 

Development, cancer and aging are intricately linked. Our lab focuses on using the advantages of C. elegans to find important genes and molecules that control aging and development of a stem cell pathway and testing if these genes are involved in aging, development and cancer in more complex organisms. A pathway of developmental timing genes, known as heterochronic genes has been identified through the genetic identification of C. elegans mutants that express stem cell fates either too early or too late relative to wild-type animals. This pathway controls the temporal progression of C. elegans development by regulating the abundance or activities of a succession of heterochronic genes over time, including key microRNAs. Since many of the C. elegans heterochronic genes and microRNAs control timing of cell differentiation and are related to human cancer genes, we are examining the role of their human homologues in cancer. We are also extrapolating our work in C. elegans to provide an understanding of how these genes and microRNAs regulate tissue differentiation and cell fate in mouse models. We are also developing microRNAs as cancer therapeutics. Lastly, since aging is the greatest risk factor for cancer, we are examining the roles of microRNAs in aging and longevity.